|         |         | 
Let  be a Nonnegative Sequence and
 be a Nonnegative Sequence and  a Nonnegative integrable function.  Define
 a Nonnegative integrable function.  Define
|  |  |  | (1) | 
|  |  |  | (2) | 
|  |  |  | (3) | 
|  |  |  | (4) | 
 .  For integrals,
.  For integrals,
| ![\begin{displaymath}
\int_0^\infty \left[{G(x)\over x}\right]^p\,dx > \left({p\over p-1}\right)^p\int_0^\infty [f(x)]^p\,dx
\end{displaymath}](c3_105.gif) | (5) | 
 is identically 0).  For sums,
 is identically 0).  For sums,
|  | (6) | 
 ).
).
References
Beesack, P. R.  ``On Some Integral Inequalities of E. T. Copson.''  In General Inequalities 2
  (Ed. E. F. Beckenbach).  Basel: Birkhäuser, 1980.
 
Copson, E. T.  ``Some Integral Inequalities.''  Proc. Royal Soc. Edinburgh 75A, 157-164, 1975-1976.
 
Hardy, G. H.; Littlewood, J. E.; and Pólya, G.  Theorems 326-327, 337-338, and 345 in Inequalities.
  Cambridge, England: Cambridge University Press, 1934.
 
Mitrinovic, D. S.; Pecaric, J. E.; and Fink, A. M.
  Inequalities Involving Functions and Their Integrals and Derivatives.  Dordrecht, Netherlands: Kluwer, 1991.