|         |         | 
 
A Cubic Ruled Surface (Fischer 1986) in which the director line meets the director Conic Section. Cayley's surface is the unique cubic surface having four Ordinary Double Points (Hunt), the maximum possible for Cubic Surface (Endraß). The Cayley cubic is invariant under the Tetrahedral Group and contains exactly nine lines, six of which connect the four nodes pairwise and the other three of which are coplanar (Endraß).
If the Ordinary Double Points in projective 3-space are taken as (1, 0, 0, 0), (0, 1, 0, 0),
(0, 0, 1, 0), (0, 0, 0, 1), then the equation of the surface in projective coordinates is
 
 and
 and

 
 
 
 
The Hessian of the Cayley cubic is given by
|   | |
|   | 
 ,
,  ,
,  , and
, and  . Taking the plane at infinity as
. Taking the plane at infinity as 
 and
setting
 and
setting  ,
,  , and
, and  as above gives the equation
 as above gives the equation
| ![$25[x^3(y+z)+y^3(x+z)+z^3(x+y)]+50(x^2y^2+x^2z^2+y^2z^2)$](c1_770.gif)  | |
|   | 
References
Endraß, S.  ``Flächen mit vielen Doppelpunkten.''  DMV-Mitteilungen 4, 17-20, Apr. 1995.
 
Endraß, S.  ``The Cayley Cubic.''
http://www.mathematik.uni-mainz.de/AlgebraischeGeometrie/docs/Ecayley.shtml.
 
Fischer, G. (Ed.).  Mathematical Models from the Collections of Universities and Museums.
  Braunschweig, Germany: Vieweg, p. 14, 1986.
 
Fischer, G. (Ed.).  Plate 33 in 
  Mathematische Modelle/Mathematical Models, Bildband/Photograph Volume.  Braunschweig, Germany: Vieweg, p. 33, 1986.
 
Hunt, B.  ``Algebraic Surfaces.''  http://www.mathematik.uni-kl.de/~wwwagag/Galerie.html.
 
Hunt, B.  The Geometry of Some Special Arithmetic Quotients.  New York: Springer-Verlag, pp. 115-122, 1996.
 
Nordstrand, T.  ``The Cayley Cubic.'' 
http://www.uib.no/people/nfytn/cleytxt.htm.
 
|         |         | 
© 1996-9 Eric W. Weisstein